2.8 A 9.2µA Gen 2 Compatible UHF RFID Sensing Tag with -12dBm Sensitivity and 1.25µV rms Input-Refused Noise Floor

Daniel Yeager, Fan Zhang, Azin Zarrafsand, Brian P Otis

University of Washington, Seattle, WA

Passive RFID technology enables battery-free wearable and implantable sensors with an unlimited lifespan, small size, and sub-gram weight. These properties facilitate advanced biomedical research (such as untethered monitoring of freely-behaving insects and small animals) and unobtrusive human health monitoring. Passive sensor tags reported to date have employed simple ring oscillator temperature sensors with no protocol or addressability [1,2]. However, realistic applications demand accurate processing of µV-level biosignals and compatibility with industry standard RFID protocols.

We present a fully-passive 900MHz RFID tag IC with addressability, full EPC Class 1 Generation 2 (Gen 2) protocol compatibility, a 1.25µVrms integrated noise-chopper-stabilized micropower sensor interface amplifier, and an 8b ADC. The communication range is 3m with an off-the-shelf RFID reader, enabling previously impossible recording scenarios like in-flight recording from small insects. A significant improvement in performance beyond the state-of-the-art was achieved by utilizing a novel self-calibrating on-chip frequency reference, subthreshold digital logic, a low-noise chopper amplifier/ADC, and a unique chip ID generator.

The system architecture is shown in Fig. 2.8.1. Sensor input signals (e.g. EEG, EMG, thermocouple) are first amplified with the on-chip instrumentation amplifier. An 8b SAR ADC digitizes the sensor data. A unique tag ID (UID) is generated by leveraging process variation in the startup configuration of an SRAM, eliminating the need for non-volatile memory [3]. Random numbers (RN) are required in the Gen 2 protocol for random backoff and tag singulation. These are generated by sampling the (unpredictable) clock phase at the downlink baseband edges and passing it through an LFSR. The on-chip controller logic encodes the RN, UID and ADC data into a Gen 2-compatible packet (Fig. 2.8.2) in response to reader commands (Query/ReqRN, Ack, and Read, respectively).

Many tags use a 1.5MHz clock, which requires the tag oscillator PVT stability to meet Gen 2 timing specifications (±15% for 640kHz uplink) as the integer divider residual exceeds the allotted tolerance. Resistor trimming [4], bias current tuning [5], phase locking, and quartz references have been proposed to compensate for PVT variation but are prohibitive due to cost, power and size constraints. We propose a 3MHz temperature-stabilized ring oscillator, shown in Fig. 2.8.3, which lowers the divider residual such that PVT compensation can be performed by the integer divider. The oscillator consumes 260nA from the 0.7V supply at a 3MHz clock frequency and a 400Hz tag read rate. Oscillator frequency variation is less than 6% from 0 to 95°C, including the on-chip bias and supply voltage generation. This enables the post divider clock to operate over a compensated range of 640kHz ±15% to 40kHz ±4% including PVT variations as per the Gen 2 specification. The chopper amplifier consumes 1.2µA from the 1.2V supply. As shown in Fig. 2.8.4, the gain is 38.5dB with and without the internally-generated 10kHz chopper clock. A high-pass corner at 0.2Hz exists when the chopper clock is off; while the gain is flat to DC with chopping enabled. The input-referred noise from 0.05 to 100Hz is 1.25µVrms and 4.26µVrms with chopping on and off, respectively.

Figure 2.8.7 shows the PCB, which measures less than 1cm^2 and weighs 0.25g. Additional gain can be configured using on-board 1.8V micropower opamps. The system was mounted on a Manduca Sexta (Hawkmoth) and used to record the in-flight core body temperature using a 36AWG Type-T (copper–constantan) thermocouple. This moth species generates a substantial temperature increase from ambient before flight. This research is traditionally performed with a wired thermocouple implanted in a tethered moth. Our wireless, battery-free experimental setup and in vivo data are shown in Fig. 2.8.5. The thermocouple was implanted in the Dorsal Longitudinal wing muscle, and real-time temperature during moth warm-up (100 samples/second) is plotted versus time. Including the antenna and thermocouple, the entire system weighs 0.35g. The power of our moth-worn system is two orders of magnitude lower than an active radio-based tag [6]. This work enables the first long-term in-flight recording of an insect by removing both the wires and batteries from the recording equipment.

Acknowledgements:
The authors thank Prof. Tom Daniel and Nicole George for moth testing assistance.

References:
Figure 2.8.1: System architecture and performance.

Figure 2.8.2: Digital core and packet structure.

Figure 2.8.3: Oscillator schematic and performance.

Figure 2.8.4: LNA schematic, gain and noise versus frequency.

Figure 2.8.5: In vivo data and deployment photograph.

Figure 2.8.6: Performance metrics and current consumption breakdown.
Figure 2.8.7: Chip and PCB micrographs.